Regional signatures of plant response to drought and elevated temperature across a desert ecosystem.

نویسندگان

  • Seth M Munson
  • Esteban H Muldavin
  • Jayne Belnap
  • Debra P C Peters
  • John P Anderson
  • M Hildegard Reiser
  • Kirsten Gallo
  • Alicia Melgoza-Castillo
  • Jeffrey E Herrick
  • Tim A Christiansen
چکیده

The performance of many desert plant species in North America may decline with the warmer and drier conditions predicted by climate change models, thereby accelerating land degradation and reducing ecosystem productivity. We paired repeat measurements of plant canopy cover with climate at multiple sites across the Chihuahuan Desert over the last century to determine which plant species and functional types may be the most sensitive to climate change. We found that the dominant perennial grass, Bouteloua eriopoda, and species richness had nonlinear responses to summer precipitation, decreasing more in dry summers than increasing with wet summers. Dominant shrub species responded differently to the seasonality of precipitation and drought, but winter precipitation best explained changes in the cover of woody vegetation in upland grasslands and may contribute to woody-plant encroachment that is widespread throughout the southwestern United States and northern Mexico. Temperature explained additional variability of changes in cover of dominant and subdominant plant species. Using a novel empirically based approach we identified "climate pivot points" that were indicative of shifts from increasing to decreasing plant cover over a range of climatic conditions. Reductions in cover of annual and several perennial plant species, in addition to declines in species richness below the long-term summer precipitation mean across plant communities, indicate a decrease in the productivity for all but the most drought-tolerant perennial grasses and shrubs in the Chihuahuan Desert. Overall, our regional synthesis of long-term data provides a robust foundation for forecasting future shifts in the composition and structure of plant assemblages in the largest North American warm desert.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crayfish Impact Desert River Ecosystem Function and Litter-Dwelling Invertebrate Communities through Association with Novel Detrital Resources

Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, an...

متن کامل

Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO2, Drought, and Warming Across Ecosystems

Field experiments that expose terrestrial ecosystems to climate change factors by manipulations are expensive to maintain, and typically only last a few years. Plant biomass is commonly used to assess responses to climate treatments and to predict climate change impacts. However, response to the treatments might be considerably different between the early years and a decade later. The aim of th...

متن کامل

Responses of Antioxidative Protection to Varying Drought Stresses Induced by Micro-Ecological Fields on Desert C4 and C3 Plants in Northwest China

Desert plants are exposed to a combination of environmental stress conditions, including water deficit, high temperature and high irradiance. We focused on antioxidative protection systems of C4 desert plant Haloxylon ammodendron and C3 desert plant Hedysarum scoparium within arid dune ecosystem with artificial controlling water availability. The activities of antioxidative enzymes (SOD, POD an...

متن کامل

No cumulative effect of 10 years of elevated [CO2 ] on perennial plant biomass components in the Mojave Desert.

Elevated atmospheric CO2 concentrations ([CO2 ]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2 ] may be particularly large in deserts, but information on their long-term response is unknown. We evaluated the cumulative effects of elevated [CO2 ] on primary production at the Nevada Desert FACE (free-air carbon dioxide enrichment) Facility....

متن کامل

Evaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling

Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 94 9  شماره 

صفحات  -

تاریخ انتشار 2013